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Technology-delivered interventions
(TDIs) = preventative or remedial digital
health tools that target mental,
behavioral, or sexual health problems




Computational methods = artificial
intelligence; i.e., machine learning, deep
learning, natural language processing




MOTIVATION



TDIS FOR SGM HEALTH ARE PROMISING®1>1819° BUT GAPS

REMAIN THAT CAN BE ADDRESSED WITH COMPUTATION

e Concerns about feasibility and scalability!’
e Lack of personalization?®2! = tailoring TDIs to individual experiences

e Lack of engagement?®2?! = J[ow motivation to use TDIs



Computationally enhanced TDIs have
potential to be highly personalized,
engaging, and scalable solutions to SGM
mental, behavioral, and sexual health
problems




What needs to happen to realize the
potential of computationally enhanced
TDIs for SGM health?



EVIDENCE, GAPS, &
CHALLENGES IN
COMPUTATIONALLY
ENHANCED TDIS
FOR SGM HEALTH



BASIC RESEARCH

INTERVENTION GENERATION/
REFINEMENT

EFFICACY TESTING
RESEARCH SETTING & PROVIDER

EFFICACY TESTING
COMMUNITY SETTING & PROVIDER

EFFECTIVENESS

IMPLEMENTATION & DISSEMINATION

Image: National Institute on Aging



At each stage, specific challenges and
gaps need to be addressed to realize the
potential of computationally enhanced
TDls.



ONE BASIC CHALLENGE IS ESTABLISHING @

COMPUTATIONAL CONSTRUCT VALIDITY
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7//ONCE COMPUTATIONAL MODELING IS VALID, @

WE CAN INTEGRATE BIG DATA INTO TDIS
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EVIDENCE OF COMPUTATIONAL
CONSTRUCT VALIDITY

Determinants
* Psychosocial stressors among multiple groups?2-2°

Mental health
* Probable PTSD among SGM women?®
* Hazardous drinking among SGM women?°
* Gender dysphoria among TNB people?®

Behavioral health
e Drug use among multiple groups33!

Sexual health
e HIV risk among GBMSM?2":28
* PrEP use among GBMSM?3°
e Candidates for PrEP among GBMSM?32

BASIC RESEARCH




MAIN GAPS = TOO FEW CLINICAL OUTCOMES AND
CONTENT-BASED COMPUTATIONAL CONSTRUCT
VALIDITY

* More clinical outcomes for specific populations

* Multimodal computation33-36
* Combine data from wearable sensors, text data, GPS, images,
etc.



INTERVENTION GENERATION,
REFINEMENT

MOST COMPUTATIONALLY ENHANCED TDIS @D
ARE FOR SEXUAL HEALTH

e Just-in-time intervention for HIV risk3?!

* Public health interventions for youth at risk for HIV — used machine
learning to target information dissemination3®

e Al diary for PrEP adherence3®
* Chat bots to promote HIV testing’

* Virtual reality to support HIV disclosure skills*
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GAPS = MOST TDIS AT INDIVIDUAL LEVEL @

AND FEW FOR MENTAL / BEHAVIORAL
HEALTH

* Computationally enhanced TDIs for systems-level interventions
* E.g., targeting sources of psychosocial stress

* Adapt SGM-tailored interventions (e.g., AFFIRM#3, ESTEEMY) for
computation and digital delivery



CHALLENGE = INTERVENTION SCIENTISTS (sTace 1 2

MAY LACK COMPUTATIONAL SKILLS

* What computational experts offer:
e Software architecture?!
* Making apps appealing, user-friendly, and immersive*>4°

e Gamification*®
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Efficacy & effectiveness = very
underdeveloped areas
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ONE MAJOR CHALLENGE IS THAT RIGOROUS
RESEARCH MOVES SLOW, TECHNOLOGY MOVES

FAST45:46

* Greater academic—-industry partnerships to balance effectiveness

and efficiency?’
* Start early, maintain throughout STAGE

e Help to prevent outdated computationally enhanced TDIs (i.e.,
shown to be efficacious/effective but no longer be cutting
edge/usable)
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TESTING

ANOTHER MAJOR CHALLENGE IS THE
REGULATION OF Al IN HEALTH#®

* Example of why: most TDIs receive minimal premarket clinical
testing due to FDA classification®°

* Substantially sparse evidence on computationally enhanced
TDIs

* Impact of problem: who protects SGM people using these
technologies?

e Burden of determining effectiveness on individual providers*

* Need policy related to computationally enhanced TDIs
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Implementation & dissemination = very
underdeveloped areas
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ONE CHALLENGE IS DELIVERING Al IN
FRONTLINE CARE-DELIVERY SYSTEMS WITHOUT
EXACERBATING INEQUALITY?>?

* Possible solutions:
* Community-tailored algorithms
* Algorithmic auditing
* Systems-level solutions



IMPLEMENTATION & DISSEMINATION

ANOTHER CHALLENGE IS FUNDING#>->1

* Problems:
e Limitations of venture capitalism®i, such as overselling the app’s

ability to help®

* Who can afford computationally enhanced TDIs if insurance
companies do not offer reimbursement?>?

* Solutions?
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BASIC RESEARCH

ETHICAL CONSIDERATIONS

e Consent, privacy, and access
e Informed consent
e Public data is available, access allowed—but should we still
obtain consent?
Unintentional outing of SGM people
Targeting of SGM people in high-stigma areas
Who has access to these very sensitive data?4°
On the cloud or on the edge?°%°7

e Bias baked into computational models3’

e [nsufficient acceptability evidence: do SGM people want this kind
of research?

IMPLEMENTATION & DISSEMINATION

e Who is ethically and legally responsible for high-risk behavior,
such as suicidal disclosure detected by the TDI? °8>°



UTECH:
A CASE STUDY



PROJECT OBJECTIVE

¢ Messages  Darrell

Hi Darrell, are you
interested in taking PrEP
to prevent HIV?

PrEP is available at 3
locations near you:

Overarching goal is to develop and test e £ oo
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algorithm to be used in personalized, B

technology-based HIV prevention. Los Angels CA G003
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miles
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PRIORITY POPULATION

* Gay, bisexual and other people who have sex with men
(including trans and other identified people who have
sex with men)

* Between the ages of 18-29

* Based in the United States

* Smart phone users (Android or iOS)

* History of substance use within the past 6 months

* History of substance use during sex within the past 6
months

* Use of dating apps and social networking apps for
substance and partner-seeking online



PROJECT OVERVIEW

Phase 2: Algorithm
Phase 1: Formative Development & Testing

* Community engagement on the .
feasibility, acceptability, and
appropriateness of technology-

based data mining & machine
learning * Machine learning to identify

patterns, predict substance use, and
HIV risk and protective behaviors

Automated data collection from
mobile smart phones and social
networking app paradata

* Qualitative interviews with

potential participants
* Personalized text messages to

* Development of culturally tailored identify geolocation-based resources

text mining library



MULTIMODAL DATA SOURCES FOR

Text

* Substance use related
terms and emojis

* Sexual behavior related
terms and emojis

MACHINE LEARNING

Paradata

Time spent on individual
apps and websites for
partner-seeking

Specific apps used for
partner-seeking

Geolocation

* Home zip code

* Time spent away from
home zip code

* Geographic variability in
participant movement
patterns



PRELIMINARY FINDINGS

Initial findings indicate high willingness to install
software (for Android users) and share data (for iOS
users) on substance use and sexual behavior given
appropriate safeguards for privacy and
confidentiality

Robust text mining library on terms and emojis used
by the priority population for substance and
partner-seeking online

Machine learning algorithm can accurately predict
methamphetamine use and PrEP use among the
priority population based on self-reported data
collected at 3-month intervals



PERSONALIZED PREVENTION EXAMPLE

20-year-old,
African American
man

Parties on the
weekends
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methamphetamin
e and GHB

Often unable to
successfully
negotiate condom
use
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