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Machine Learning Unveiled as

a Bridge-building Trailblazer
(really a set of bridging paths falling ©
under the Al* umbrella!) RO

A. ML Essentials: roots in data analysis methods

B. Computational Strategies: varied forms of
‘learning’ and applying ‘learning’ algorithms...

S

* Recall cynical definition offered at recent NIH meeting: if it actually works C
in practice somehow, it’s ‘machine learning’ otherwise it may just be termed %%

‘artificial intelligence’ that still has more to learn...

National Institute of
Diabetes and Digestive
and Kidney Diseases



https://www.nimhd.nih.gov/resources/schare/
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ML Essentials: roots in data analysis methods <‘@’>
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* Data analysis methods to ‘learn” how
to predict patterns in data

— Classic iris flower regression example Wik
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* Data analysis methods to ‘learn’ 30
novel patterns in data: clustering & .~ | oo B
(@)’mixture modeling’ L o ‘ - Ze
— Discover ‘clusters’ by length measures ’ :S *. B
— Data reduction by principal components 21 "} _2 |

Petal width (cm)
https://exeter-data-analytics.github.io/MachineLearning/_main_files/figure-html/unnamed-chunk-72-1.png| https://gexijin.github.io/learnR/book_files/figure-html|/13-5-1.png
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e Data analysis methods to ‘learn” how to
predict patterns in data

e Data analysis methods to ‘learn’ novel
patterns in data: clustering

* Relates to UN-supervised v. semi-
supervised v. Supervised learning

— Hearken back to prior ScCHARe Think-a-thon

— Underway: PHASE 2 of NIDDK CR Data-
Centric Challenge (till Jan 22, 2024)

NIDDK Central Repository Data-Centric Challenge

Enhancing NIDDK datasets for future Artificial Intelligence (Al) applications
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ML Essentials: supervised v. semi-supervised v.

unsupervised learning

‘Machine Learning’ as a tool for
Data Science (thus, for health
equity research)

e Does one term cover all
approaches? Types of ML,
matching use cases & data

* e.g. (extent of ‘supervision’;
goals of analysis)

* What does “extent of SupervisediLearning
‘supervision”” mean in this

context?

: Supervision here:
each instance is
given exactly 1
‘label’ to distinguish

https://www.gettyimages.ca/detail/news-photo/republician-presidential-hopeful-and-texas-governor-george-news-photo/51543471?adppopup=true
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ML Essentials: supervised v. semi-supervised v.

unsupervised learning

‘Machine Learning’ as a tool for
Data Science (thus, for health
equity research)

e Does one term cover all
approaches? Types of ML,
matching use cases & data

* e.g. (extent of ‘supervision’;
goals of analysis)

Semi—supervised:Learning

* What does “extent of

. . . . RED color shows u :
‘supervision”” mean in this on the RIGHT P | Supervision here:

context? No picture lacksa | |~~~ " "~ "~ 1 Only some instances
given a ‘label’ to

‘mirror’ image RO .
distinguish ‘labeling
pattern overall...
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ML Essentials: supervised v. semi-supervised v.

unsupervised learning

‘Machine Learning’ as a tool for
Data Science (thus, for health equity
research)

e Does one term cover all
approaches? Types of ML,
matching use cases & data

* e.g. (extent of ‘supervision’;
goals of analysis)

* What does “extent of - o Unsupervised:Learning
‘supervision’” mean in this our-eyec rox | Supervision here:
5 Four-eyed Wolf —>—
context: Red kidneys & | 4= = = = = = = — I Only intrinsic parts
of instances used to

‘label’ them, elicit
any pattern overall...

butterflies around a 2
person drum circle
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ML Essentials: supervised v. semi-supervised v.

unsupervised learning

‘Machine Learning’ as a tool for
Data Science (thus, for health
equity research)

e Does one term cover all
approaches? Types of ML,
matching use cases & data

* e.g. (extent of ‘supervision’;
goals of analysis)

* What does “extent of UnsupervisediLearning
.. 4 . I
‘supervision”” mean in this | Supervision here:
context? o I LACK of such can
elicit patterns NOT
typically within

human intuition
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ML Essentials: supervised v. semi-supervised v.

unsupervised learning

* From Booz Allen Team for CKD
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ML Essentials: supervised v. semi-supervised v.

unsupervised learning
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such an algorithm would stratify patients and inform clinical decisions, including the use of

additional diagnestics to enable personalized treatment.

Figures 1 from editorial on and paper of DeepMind’s AKI approach in Tomasev, N. et al. A clinically
applicable approach to continuous prediction of future acute kidney injury. Nature 572,116-119 (2019).

“We make use of several open-source libraries to conduct our experiments: the machine learning

framework TensorFlow (https://github.com/tensorflow/tensorflow) along with the TensorFlow library
Sonnet (https://github.com/deepmind/sonnet)”


https://github.com/tensorflow/tensorflow
https://github.com/deepmind/sonnet

ML Essentials: supervised v. semi-supervised v.

unsupervised learning

How Unsupervised Machine Learning Works

* From Booz Allen Team for CKD  gm
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ML Essentials: supervised v. semi-supervised v.

unsupervised learning

From NIDDK report: network
visualization showing 3
distinct subtypes of Type 2
diabetes elicited after
integrating data from EHRs
for > 11K patients
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* From NIDDK-funded team =
* From other NIH-funded team J,

— Mammograms
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Figure 1d: Test set assessment.
Comparison of the original interpreting
radiologist assessment with the deep
learning (DL) model assessment

for (a) binary and (c) four-way
mammographic breast density
classification. (b, d) Corresponding
examples of mammograms with
concordant and discordant assessments by
the radiologist and with the DL model.
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Heterogeneous
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https://www.nature.com/articles/d42473-019-00035-5

Fatty Scattered  Heterogeneous Dense o
DL Model ] | Credit: Andre Kahles, Gunnar Ratsch, Chris Sander
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ML Essentials: supervised v. semi-supervised v.

unsupervised learning

From NIDDK report: network
visualization showing 3
distinct subtypes of Type 2
diabetes elicited after
integrating data from EHRs
for > 11K patients
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Figure 1d: Test set assessment.
Comparison of the original interpreting
radiologist assessment with the deep
learning (DL) model assessment

for (a) binary and (c) four-way
mammographic breast density
classification. (b, d) Corresponding
examples of mammograms with
concordant and discordant assessments by
the radiologist and with the DL model.
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Machine Learning Computational Strategies

* We now engage participants to check our mutual understanding
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